Mathematical Analysis for Engineers

B. Dacorogna and C. Tanteri
Contents

Foreword vi

I Vector analysis 1

1 Differential operators of mathematical physics 3
 1.1 Definitions and theoretical results 3
 1.2 Examples 5
 1.3 Exercises 7

2 Line integrals 9
 2.1 Definitions and theoretical results 9
 2.2 Examples 10
 2.3 Exercises 11

3 Gradient vector fields 13
 3.1 Definitions and theoretical results 13
 3.2 Examples 14
 3.3 Exercises 18

4 Green theorem 21
 4.1 Definitions and theoretical results 21
 4.2 Examples 22
 4.3 Exercises 24

5 Surface integrals 27
 5.1 Definitions and theoretical results 27
 5.2 Examples 29
 5.3 Exercises 31

6 Divergence theorem 33
 6.1 Definitions and theoretical results 33
 6.2 Examples 34
CONTENTS

6.3 Exercises .. 36

7 Stokes theorem .. 39
 7.1 Definitions and theoretical results 39
 7.2 Examples .. 41
 7.3 Exercises .. 43

8 Appendix ... 45
 8.1 Some notations and notions of topology 45
 8.2 Some notations for functional spaces 49
 8.3 Curves .. 50
 8.4 Surfaces .. 52
 8.5 Change of variables 64

II Complex analysis 67

9 Holomorphic functions and Cauchy–Riemann equations 69
 9.1 Definitions and theoretical results 69
 9.2 Examples .. 71
 9.3 Exercises .. 74

10 Complex integration 77
 10.1 Definitions and theoretical results 77
 10.2 Examples .. 78
 10.3 Exercises .. 79

11 Laurent series .. 83
 11.1 Definitions and theoretical results 83
 11.2 Examples .. 86
 11.3 Exercises .. 88

12 Residue theorem and applications 91
 12.1 Part I ... 91
 12.1.1 Definitions and theoretical results 91
 12.1.2 Examples 92
 12.2 Part II: Evaluation of real integrals 93
 12.3 Exercises .. 97

13 Conformal mapping 101
 13.1 Definitions and theoretical results 101
 13.2 Examples .. 102
 13.3 Exercises .. 104
III Fourier analysis 107

14 Fourier series 109
 14.1 Definitions and theoretical results 109
 14.2 Examples 113
 14.3 Exercises 116

15 Fourier transform 121
 15.1 Definitions and theoretical results 121
 15.2 Examples 123
 15.3 Exercises 125

16 Laplace transform 127
 16.1 Definitions and theoretical results 127
 16.2 Examples 129
 16.3 Exercises 132

17 Applications to ordinary differential equations 135
 17.1 Cauchy problem 135
 17.2 Sturm–Liouville problem 137
 17.3 Some other examples solved by Fourier analysis 140
 17.4 Exercises 143

18 Applications to partial differential equations 145
 18.1 Heat equation 145
 18.2 Wave equation 150
 18.3 Laplace equation in a rectangle 152
 18.4 Laplace equation in a disk 155
 18.5 Laplace equation in a simply connected domain 159
 18.6 Exercises 162

IV Solutions to the exercises 167

1 Differential operators of mathematical physics 169

2 Line integrals 177

3 Gradient vector fields 181

4 Green theorem 189

5 Surface integrals 199
CONTENTS

6 Divergence theorem 203
7 Stokes theorem 219
9 Holomorphic functions and Cauchy–Riemann equations 233
10 Complex integration 239
11 Laurent series 247
12 Residue theorem and applications 263
13 Conformal mapping 277
14 Fourier series 291
15 Fourier transform 303
16 Laplace transform 309
17 Applications to ordinary differential equations 317
18 Applications to partial differential equations 331

Bibliography 353

Table of Fourier Transform 355

Table of Laplace Transform 356

Index 357
Foreword

This book is a translation of the third French edition. It is intended for engineering students who followed a basic course in analysis (differential and integral calculus). It corresponds to a second year course at the Ecole Polytechnique Fédérale of Lausanne. It can also be useful, as a complement to a more theoretical course, to mathematics and physics students.

There are excellent books on the matters that are discussed here; some of them that we particularly like are mentioned in the bibliography. Our approach is, however, different. We have emphasized the learning of the field through examples and exercises. The theoretical part is short, definitions and theorems are given without comments.

The book is organized as follows. The first three parts (Vector analysis, Complex analysis and Fourier analysis) represent the theoretical part and they are essentially independent of each other. The fourth part gives detailed solutions to all exercises that are proposed in the first three parts. The theoretical discussion follows the following pattern.

1) Definitions and theorems are stated, with mathematical rigor, but without comments. We also mention the precise pages of certain books from the bibliography where the interested reader can find further developments.

2) Some significant examples are discussed in detail.

3) Finally, several exercises are given and, as already said, solved in the fourth part of the book. The first type of exercise will help students to master the concepts and the techniques. A second type (identified with a *) presents some theoretical developments that allow the more motivated students to deepen their understanding of the subject.

We would now like to make some comments on the bibliography. We have selected two types of book.

1) As mathematical references, we particularly like the following books:
- for vector analysis the Protter–Morrey book and the more advanced Fleming book;
- for complex analysis the very classical Ahlfors book;
- for Fourier series the already mentioned Protter–Morrey book, while for Fourier and Laplace transforms the Widder book;
- the two Stein–Shakarchi books cover a large part of the matters discussed here (complex and Fourier analysis);
- finally, in French, the three volumes of Chatterji cover in detail the entire subject of our book.

2) For engineers we recommend the Kreyszig book. The two small books, in French, by Arbenz–Wohlhauser are also nice as a short introduction.

We have benefited from several comments from students and colleagues; notably S. Bandyopadhyay, M. Cibils, G. Croce, G. Csato, J. Douchet, H. Gebran, O. Kneuss, P. Metzener, G. Pisante, A. Ribeiro, L. Rollaz and K. D. Semmler. The translation and the preparation of the English version have been carried out by R. Guglielmetti.