SOME RECENT RESULTS ON POLYCONVEX, QUASICONVEX
AND RANK ONE CONVEX FUNCTIONS

Bernard DACOROGNA
Department of Mathematics
Ecole Polytechnique Fédérale de Lausanne
CH 1015. Lausanne. Switzerland

0. Introduction

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, $u : \mathbb{R}^n \to \mathbb{R}^m$, $\nabla u = \left(\frac{\partial u_i}{\partial x_j} \right)_{1 \leq i \leq m, 1 \leq j \leq n} \in \mathbb{R}^{nm}$, $f : \mathbb{R}^{nm} \to \mathbb{R}$ be a continuous function and

$$I(u) = \int_{\Omega} f(\nabla u(x)) \, dx.$$

In order to state minimization problems involving such functionals, we need to impose some convexity hypotheses on f. We now define such conditions, starting with the well known ones.

Definition.

1) f is convex if

$$f(\lambda \xi + (1 - \lambda) \eta) \leq \lambda f(\xi) + (1 - \lambda) f(\eta)$$

for every $\lambda \in [0,1], \xi, \eta \in \mathbb{R}^{nm}$.

2) For $\xi \in \mathbb{R}^{nm}$, let $T(\xi)$ denote the vector composed by ξ and all its $s \times s$ minors. $T(\xi) \in \mathbb{R}^{\min\{n,m\}}$ where $\tau(n,m) = \sum_{s=1}^{\min\{n,m\}} \frac{\min!}{s!2(s - s)!}$. If $m = n = 2$, then $\tau(2,2) = 5$ and $T(\xi) = (\xi, \det(\xi))$. A function is polyconvex if there exists $g : \mathbb{R}^{\tau(n,m)} \to \mathbb{R}$ convex such that

$$f(\xi) = g(T(\xi))$$

for every $\xi \in \mathbb{R}^{nm}$.

3) f is said to be quasiconvex if

$$\int_{\Omega} f(\xi + \nabla \varphi(x)) \, dx \geq f(\xi) \text{ meas}\Omega$$

for every $\xi \in \mathbb{R}^{nm}$, every $\varphi \in W^{1,\infty}_0(\Omega; \mathbb{R}^m)$ (the set of continuous functions φ vanishing on $\partial \Omega$ and with uniformly bounded gradients).
4) \(f \) is said to be rank one convex if
\[
f(\lambda \xi + (1 - \lambda) \eta) \leq \lambda f(\xi) + (1 - \lambda) f(\eta)
\]
for every \(\lambda \in [0, 1] \), \(\xi, \eta \in \mathbb{R}^{nm} \), with rank \((\xi - \eta) \leq 1 \).

Remark. As well known the preceding notions are less and less restrictive (see for general references Dacorogna 1), i.e.
\[
f \text{convex} \Rightarrow f \text{polyconvex} \Rightarrow f \text{quasiconvex} \Rightarrow f \text{rank one convex}.
\]

This article is organized as follows. In the first section we discuss the example of Dacorogna-Marcellini 2 and Alibert-Dacorogna 3. In the second one we indicate how the effect of symmetries simplifies the notions of convexity and polyconvexity. In the third section we show how these symmetries influence the computations of the different envelopes.

1. An example

Let \(m = n = 2 \) and let \(\xi = (\xi_{ij})_{1 \leq i,j \leq 2} \in \mathbb{R}^{2 \times 2} \), \(|\xi|^2 = \sum_{i,j=1}^{2} \xi_{ij}^2 \). Let for \(\gamma \in \mathbb{R} \)
\[
f_{\gamma}(\xi) = |\xi|^2 (|\xi|^2 - 2\gamma \det \xi).
\]

We have the following theorem.

Theorem 1.

1) \(f_{\gamma} \) is convex if and only if \(|\gamma| \leq \frac{1}{2} \sqrt{2} \).

2) \(f_{\gamma} \) is polyconvex if and only if \(|\gamma| \leq 1 \). In the case \(\gamma = 1 \) one has the following

2a) For every \(\xi, \eta \in \mathbb{R}^{2 \times 2} \)
\[
f_{\gamma}(\xi) - f_{\gamma}(\eta) \geq 4 (|\eta|^2 - \det \eta) < \eta; \xi - \eta > -2|\eta|^2 (\det \xi - \det \eta).
\]

where \(< ; , \cdot > \) stands for the usual scalar product.

2b) Let \(g : \mathbb{R}^{2 \times 2} \times \mathbb{R} \rightarrow \mathbb{R} \) be defined by
\[
g(\xi, \delta) = \begin{cases}
0 & \text{if } |\xi|^2 + 2\delta \xi \leq 4\delta \\
(|\xi|^2 + 2\delta \xi - 4\delta)(|\xi|^2 + 2\delta \xi - 2\delta) & \text{if } |\xi|^2 + 2\delta \xi \geq 4\delta
\end{cases}
\]

for every \(\xi \in \mathbb{R}^{2 \times 2} \).
Then \(g \) is convex and
\[
f_{\gamma}(\xi) = g(\xi, \det \xi).
\]

4) There exists \(\varepsilon > 0 \) such that \(f_{\gamma} \) is quasi-convex if and only if \(|\gamma| \leq 1 + \varepsilon \).

5) \(f_{\gamma} \) is rank one convex if and only if \(|\gamma| \leq \frac{3}{2} \).

Remarks.

1) The results 1), 2), 3), 4) have been published by Dacorogna-Marcellini¹ and Alibert-Dacorogna². The result 2a), which gives immediately that \(f_{\gamma} \) is polyconvex if \(\gamma = 1 \), was proved by Iwaniec-Lutoborski⁴. The representation 2b) has been found by Hartwig⁵.

2) Numerical computations to determine \(\varepsilon \) in 3) have been undertaken by Dacorogna-Douchet-Gangbo-Rappaz⁶ and more recently by Gremaud⁷. They all tend to show that \(1 + \varepsilon = \frac{2}{\sqrt{3}} \). So that the function \(f_{\gamma} \) does not seem to produce a counterexample to the implication \(f \text{ rank one convex} \Rightarrow f \text{ quasi-convex} \).

3) To understand the difficulty in computing analytically the exact value of \(\varepsilon \) giving the quasi-convexity, one should see that it is related (cf Alibert-Dacorogna¹) to the determination of the best constant \(\delta \) in
\[
\int_{\Omega} (|\nabla \varphi|^2 - 2\det \nabla \varphi)^2 \, dx \geq \delta \int_{\Omega} |\nabla \varphi|^4 \, dx
\]
for every \(\varphi \in W^{1,\infty}_0(\Omega; \mathbb{R}^2) \). As it was pointed out to me by V. Sverak and T. Iwaniec, this is related to a (still open) conjecture of Gehring (see for more details Iwaniec-Martin⁹, Banuelos-Wang¹⁰).

2. Convexity and polyconvexity for rotationally invariant functions

We here discuss the case \(m = n = 2 \). We denote by \(\mathbb{R}^{2\times2}_d \) the subset of \(\mathbb{R}^{2\times2} \) consisting of diagonal matrices. We let
\[
\mathcal{O} = \{ U \in \mathbb{R}^{2\times2} : UU^t = I \}
\]
where \(U^t \) denotes the transpose of \(U \) and \(I \) the identity matrix. We let \(\mathcal{O}^+ \) be the subset of \(\mathcal{O} \) consisting of those \(U \) with \(\det U = 1 \). We assume in this section and in the next one that \(f \) satisfies, in addition of continuity, that
\[
(f^+)(U \xi V) = f(\xi)
\]
for every \(\xi \in \mathbb{R}^{2\times2} \), \(U, V \in \mathcal{O}^+ \).
Usually in applications (Ball 11, Ciarlet 12, Dacorogna 1) one imposes that

\[(H)\]
\[f(UV) = f(\xi)\]

for every \(\xi \in \mathbb{R}^{2 \times 2}, U, V \in \mathcal{C}\). Note that the example of the previous section satisfies \((H^+)\) but not \((H)\).

One can then show the following result.

Theorem 2. Let \(f : \mathbb{R}^{2 \times 2} \to \mathbb{R}\) satisfy \((H^+)\). Then \(f\) is convex if and only if \(f|_{\mathbb{R}^{2 \times 2}_d}\) is convex.

Remarks.

i) \(f|_{\mathbb{R}^{2 \times 2}_d}\) being convex, means that \(f\) is convex when restricted to diagonal matrices.

ii) in the example given above the convexity of \(f\) has therefore only to be checked for

\[
f(\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}) = (x^2 + y^2)(x^2 + y^2 - 2\gamma xy),
\]

which is, at least theoretically, simpler to establish than the convexity on the whole of \(\mathbb{R}^{2 \times 2}\).

More interestingly Theorem 2 is also valid (c.f. the above mentioned paper) for polyconvex functions. We first define what we mean by \(f|_{\mathbb{R}^{2 \times 2}_d}\) is polyconvex. This just means that there exists \(g : \mathbb{R}^3 \to \mathbb{R}\) convex such that

\[
f(\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}) = g(a, b, ab). \tag{2.1}
\]

Theorem 3. Let \(f : \mathbb{R}^{2 \times 2} \to \mathbb{R}\) satisfy \((H^+)\). The following conditions are then equivalent:

i) \(f\) is polyconvex.

ii) \(f|_{\mathbb{R}^{2 \times 2}_d}\) is polyconvex.

iii) The following holds

\[
\sum_{i=1}^{4} \lambda_i f(\xi_i) \geq f\left(\sum_{i=1}^{4} \lambda_i \xi_i\right)
\]

Remark. in the comp Lutoborski \(\gamma = 1\) and they have \((x^2+y^2)(x-y)^2\).

Similarly Ha has the desired convexity (and one is meaningless for Dacorogna-Ball and that \(f|_{\mathbb{R}^{2 \times 2}_d}\) indeed there.
for every \(\lambda_i \geq 0 \) with \(\sum_{i=1}^{4} \lambda_i = 1 \) and every \(\xi_i \in \mathbb{R}^{2 \times 2} \) such that
\[
\sum_{i=1}^{4} \lambda_i \det \xi_i = \det \left(\sum_{i=1}^{4} \lambda_i \xi_i \right).
\]

iv) For every \(\eta \in \mathbb{R}^{2 \times 2} \), there exist \(\alpha(\eta), \beta(\eta), \gamma(\eta) \in \mathbb{R} \) such that
\[
f(\xi) \geq f(\eta) + \begin{pmatrix} \alpha(\eta) & 0 \\ 0 & \beta(\eta) \end{pmatrix} (\xi - \eta) > + \gamma(\eta) (\det \xi - \det \eta)
\]
for every \(\xi \in \mathbb{R}^{2 \times 2} \) and where \(<.,.> \) denotes the scalar product in \(\mathbb{R}^{2 \times 2} \).

Remark. In practice this theorem might lead to a considerable simplification in the computations. For instance in the example of the above section, Iwaniec-Lutoborski have proved 2a) essentially for diagonal matrices. In this case, i.e. \(\gamma = 1 \)
\[
f_{\gamma} \left(\begin{array}{cc} x & 0 \\ 0 & y \end{array} \right) = (x^2 + y^2)(x - y)^2,
\]
and they have shown (lemma 10.2) that for every \(x, y, a, b \in \mathbb{R} \)
\[
(x^2+y^2)(x-y)^2 -(a^2+b^2)(a-b)^2 \geq 4(a^2+b^2)(ay-by-a^2-b^2)-2(a^2+b^2)(xy-ab)
\]
Similarly Hartwig has computed its function \(g \) in 2b) for diagonal matrices, showing that
\[
g(x,0,0,y,\delta) = \left\{ \begin{array}{ll}
0 & \text{if } (x+y)^2 \leq 4\delta \\
((x+y)^2 - 4\delta) ((x+y)^2 - 2\delta) & \text{if } (x+y)^2 \geq 4\delta
\end{array} \right.
\]
has the desired properties.

These results for convexity and polyconvexity do not extend to rank one convexity (and obviously to quasiconvexity, since quasiconvexity on diagonal matrices is meaningless). Indeed in Dacorogna-Koshigoe, following some computations of Dacorogna-Douchet-Gangbo-Rappaz, it is shown that there are functions \(f \) such that \(f_{1,\mathbb{R}^{2 \times 2}} \) is rank one convex, but not rank one convex on the whole of \(\mathbb{R}^{2 \times 2} \).

Indeed there are \(a \geq 2 + \sqrt{2} \) and \(b \geq 0 \) such that
\[
f_{a,b}(\xi) = |\xi|^{2a} - 2^{a-1} b |\det \xi|^a
\]
is rank one convex when restricted to $\mathbb{R}^{d \times 2}$ but not globally rank one convex.

3. The different envelopes

We assume that f satisfies (H^+) or (H) and we define

$$
Cf = \sup \{ g \leq f : \text{g convex} \}
$$

$$
Pf = \sup \{ g \leq f : \text{g polyconvex} \}
$$

$$
Qf = \sup \{ g \leq f : \text{g quasiconvex} \}
$$

$$
Rf = \sup \{ g \leq f : \text{g rank one convex} \}
$$

Then, in general: $Cf \leq Pf \leq Qf \leq Rf \leq f$.

The first elementary result (cf Dacorogna-Koshigoe 13 and Buttazzo-Dacorogna-Gangbo 14) is:

Theorem 4. If f satisfies (H^+) (respectively (H)) then so do Cf, Pf, Qf, Rf.

We quote here another result of Dacorogna-Koshigoe 13.

Theorem 5. Let $f : \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ satisfy (H^+) then for every $\xi \in \mathbb{R}^{2 \times 2}$

$$
Pf(\xi) = \inf \left\{ \sum_{i=1}^{4} \lambda_i f(\eta_i) : \eta_i \in \mathbb{R}^{2 \times 2}, \sum_{i=1}^{4} \lambda_i (\eta_i, \det \eta_i) = (\xi, \det \xi) \right\}.
$$

Remarks

i) Compared to the theorem (cf Dacorogna 1) for general functions f, this might be a simplification. Indeed, for general f, not satisfying (H^+), Pf is computed with 6 general matrices, instead of 4 diagonal ones.

ii) A similar result exists for convex functions.

In the more restrictive case where f satisfies (H) and hence depends only on the singular values of f (i.e. the eigenvalues of $(\xi(\xi^T)^{1/2})$ one has similar simplifications for computing the convex or polyconvex envelope: cf Buttazzo-Dacorogna-Gangbo 14. It is well known that if $f : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ satisfies (H) then

$$
f(\xi) = g(\lambda_1, ..., \lambda_n)
$$

where λ_i are the singular values of ξ. We assume also that the λ_i have been ordered increasingly, i.e. $0 \leq \lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$. We denote by $Q = \{(\lambda_1, ..., \lambda_n) \in \mathbb{R}^n : 0 \leq \lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n\}$. Then one can show that

$$
Cf(\xi) = \hat{g}(\lambda_1, ..., \lambda_n)
$$

where \hat{g} is the greater and increasing in each λ_i.

To conclude it is interesting example. Several are available to privilege one which

Let for $\xi \in \mathbb{R}^{2 \times 2}$

Then using theorem equivalent to computing $Pf(\xi)$

$$
PF(\xi) = \inf \left\{ \sum_{i=1}^{4} \lambda_i f(\eta_i) : \eta_i \in \mathbb{R}^{2 \times 2}, \sum_{i=1}^{4} \lambda_i (\eta_i, \det \eta_i) = (\xi, \det \xi) \right\}.
$$

$$
\text{Using also diagonal elements.}
$$

then $Cf(\xi) = \hat{g}(\lambda_1, ..., \lambda_n)$

difference between 2.

References

3. J.J. Alibert, B. Buttazzo, Polyconvex in two...
where \tilde{g} is the greatest function less than g on Q and which is lower semicontinuous and increasing in each variable.

To conclude it is interesting to see how these results can be applied to a particular example. Several are given in Buttazzo-Dacorogna-Gangbo14, but we would like to privilege one which was extensively studied by Kohn-Strang15.

Let for $\xi \in \mathbb{R}^{2 \times 2}$

$$f(\xi) = \begin{cases}
1 + |\xi|^2, & \text{if } \xi \neq 0 \\
0 & \text{if } \xi = 0
\end{cases}$$

Then using theorem 3, 4, 5 we know that, to compute the polyconvex envelope is equivalent to compute the polyconvex envelope in $\mathbb{R}^{2 \times 2}$ i.e. the one corresponding to

$$f\left(\begin{array}{cc}
x & 0 \\
y & 0
\end{array}\right) = \begin{cases}
1 + x^2 + y^2 & \text{if } x^2 + y^2 \neq 0 \\
0 & \text{if } x = y = 0
\end{cases}$$

As shown by Kohn-Strang15 (cf also Dacorogna1)

$$Pf\left(\begin{array}{cc}
x & 0 \\
y & 0
\end{array}\right) = \begin{cases}
1 + x^2 + y^2 & \text{if } |x| + |y| \geq 1 \\
2(|x| + |y|) - 2|x||y| & \text{if } |x| + |y| \leq 1
\end{cases}$$

Using also diagonal matrices, Doaly16 has shown that if $s \geq 2$ and

$$f_s(\xi) = \begin{cases}
1 + |\xi|^s & \text{if } \xi \neq 0 \\
0 & \text{if } \xi = 0
\end{cases}$$

then $Cf_s\left(\begin{array}{cc}
x & 0 \\
y & 0
\end{array}\right) = Pf_s\left(\begin{array}{cc}
x & 0 \\
y & 0
\end{array}\right)$ (i.e. $Pf_s(\xi) = Cf_s(\xi)$ if rank$\xi \leq 1$) and the difference between $Pf_s\left(\begin{array}{cc}
x & 0 \\
y & 0
\end{array}\right)$ and $Cf_s\left(\begin{array}{cc}
x & 0 \\
y & 0
\end{array}\right)$ is maximal when $x = y$.

References

5 H. Hartwig, in preparation.
16 O. Dosly, A remark on polyconvex envelope of the radially symmetric functions. Preprint.

Introduction

In this paper we consider elliptic equations in domains. Let \(\Omega \) be a monotone open set.

\begin{align}
\text{(0.1)} & \\
\text{(0.2)} & \\
\text{(0.3)} & \\
\text{(0.4)} & \\
\text{(0.5)} &
\end{align}

where \(\omega : \Omega \times \mathbb{R}^N \) is Lipschitz continuous.

For every \(x \in \Omega \) odd and positive:

\begin{align}
\text{(0.6)} & \\
\text{(0.7)} & \\
\text{(0.8)} & \\
\text{(0.9)} & \\
\text{(0.10)} &
\end{align}

for every \(x \in \Omega \) we have

\begin{align}
\text{(0.11)} & \\
\text{(0.12)} & \\
\text{(0.13)} & \\
\text{(0.14)} & \\
\text{(0.15)} &
\end{align}