On the n-dimensional Dirichlet problem for isometric maps

B. Dacorogna P. Marcellini E. Paolini

Abstract

We exhibit explicit Lipschitz maps from \mathbb{R}^n to \mathbb{R}^n which have almost everywhere orthogonal gradient and are equal to zero on the boundary of a cube. We solve the problem by induction on the dimension n.

1 Introduction

We consider in the general n—dimensional case ($n > 1$) the nonlinear system of pde’s

$$ Du^t Du = I, $$

where Du^t denotes the transpose matrix of the gradient Du of a map $u : \mathbb{R}^n \to \mathbb{R}^n$, while I is the identity matrix. A map u satisfying (1) is said to be an isometric map or rigid map and its gradient is an orthogonal matrix; briefly as usual we write $Du \in O(n)$.

To the system (1) we associate the homogeneous boundary condition $u = 0$ on the boundary of a bounded open set of \mathbb{R}^n. The Dirichlet problem that we obtain is critical; i.e., it is incompatible with classical solutions. In fact any isometric map $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ of class C^1 on an open connected set Ω of \mathbb{R}^n is affine by the classical Liouville theorem, and it therefore cannot be equal to zero on its boundary $\partial \Omega$. Even more: since its invertibility, it cannot be equal to zero in more than a single point. We can then consider Lipschitz continuous maps $u : \mathbb{R}^n \to \mathbb{R}^n$, satisfying the system (1) almost everywhere; then, if u is equal to zero at the boundary $\partial \Omega$ it must be not differentiable at any neighbourhood of any boundary point, thus presenting a fractal behaviour at the boundary.

In this paper we find an explicit Lipschitz solutions to the differential problem

$$ \begin{cases}
Du(x) \in O(n) & \text{a.e. } x \in Q \\
u(x) = 0 & x \in \partial Q,
\end{cases} $$

where $Q = (0,1)^n$ is the unit cube and $O(n)$ stands, as said above, for the set of orthogonal matrices in $\mathbb{R}^{n \times n}$.

The study of \textit{differential inclusions} of the form
\[
\begin{cases}
 Du(x) \in E & \text{a.e. } x \in \Omega \\
 u(x) = u_0(x) & x \in \partial \Omega,
\end{cases}
\]
where \(E \subset \mathbb{R}^{N \times n} \), \(u: \Omega \subset \mathbb{R}^n \to \mathbb{R}^N \) and \(u_0 \) is a given map, has received considerable attention. In the vectorial case \(n, N \geq 2 \), general theories of existence have been developed either via the Baire category method (see Dacorogna–Marcellini \cite{3}, \cite{4}, \cite{5}) or via the convex integration method by Gromov (see Müller–Sverak \cite{9}). These methods are purely existential and do not give a way of constructing explicit solutions. In parallel, for some special problems mostly related to the case when \(E \) is the set of orthogonal matrices, some solutions were provided in a constructive way. This started with the work of Cellina–Perrotta \cite{1} when \(n = N = 3 \) and \(u_0 = 0 \), Dacorogna–Marcellini–Paolini \cite{6}, \cite{7} when \(n = N = 2 \) or \(n = N = 3 \) and Iwaniec–Verchota–Vogel \cite{8} for \(n = N = 2 \). In this context there are also some related unpublished arguments by R. D. James for \(n = N = 2 \). In \cite{7} the connection between this problem with \textit{isometric immersions} and \textit{origami} has been made. Moreover in \cite{7} we also dealt with inhomogeneous linear boundary data.

In the present article we give a self contained and purely analytical construction in any dimension. Despite its generality our proof is shorter than the existing ones which were, however, restricted to the cases \(n = 2, 3 \). We first solve the problem by induction on the dimension in the half space \((0, \infty) \times \mathbb{R}^{n-1} \). We then get the solution to our problem by composing the solution in the half space with a map that sends the whole boundary of the unit cube in \(\mathbb{R}^n \) to one of its faces. We should point out that our construction in fact solves the problem in a more precise way: instead of considering matrices in the whole of \(O(n) \), we use only a finite number of them, namely \textit{permutation matrices} whose non zero entries are \(\pm 1 \).

\section{The fundamental brick}

Define \(f: \mathbb{R} \to \mathbb{R} \) by
\[
f(t) = \min\{t, 1-t\}.
\]
Then define \(h: \mathbb{R}^2 \to \mathbb{R}^2 \) by
\[
h(x, y) = (h^1(x, y), h^2(x, y)) = \begin{cases}
(x, f(y)) & \text{if } x \leq y, \\
(y, f(x)) & \text{if } x \geq y.
\end{cases}
\]
Finally we define a map \(\phi_n: \mathbb{R}^n \to \mathbb{R}^n \), for \(n = 2, 3, \ldots \), by induction on \(n \)
\[
\begin{align*}
\phi_2(x_1, x_2) &= h(x_1, x_2) \\
\phi_{n+1}(x_1, x_2, \ldots, x_{n+1}) &= (\phi_n(h^1(x_1 - n + 1, x_{n+1}) + n - 1, x_2, \ldots, x_n), h^2(x_1 - n + 1, x_{n+1})).
\end{align*}
\]
More in details, \(\phi_{n+1} \) can be written as a composition of the following maps

\[
\begin{align*}
(x_1, \cdots, x_{n+1}) &\mapsto (x_1 - n + 1, x_2, \cdots, x_{n+1}) \\
(y_1, \cdots, y_{n+1}) &\mapsto (h^1(y_1, y_{n+1}), y_2, \cdots, y_n, h^2(y_1, y_{n+1})) \\
(z_1, \cdots, z_{n+1}) &\mapsto (z_1 + n - 1, z_2, \cdots, z_{n+1}) \\
(w_1, \cdots, w_{n+1}) &\mapsto (\phi_n(w_1, \cdots, w_n), w_{n+1}).
\end{align*}
\]

We recall that \(u: \mathbb{R}^n \to \mathbb{R}^n \) is called a rigid map, or equivalently an isometric map, if it is Lipschitz continuous and \(Du(x) \in O(n) \) for almost every \(x \in \mathbb{R}^n \); i.e., if \(u \) satisfies (1) for almost every \(x \in \mathbb{R}^n \).

Theorem 1 (properties of \(\phi_n \)) The map \(\phi_n: \mathbb{R}^n \to \mathbb{R}^n \), for every \(n = 2, 3, \ldots \), satisfies the following properties

1. \(\phi_n \) is a piecewise affine rigid map;
2. if \(x_2, \cdots, x_{n+1} \in [0, 1] \) then
 \[
 \phi_n(0, x_2, \cdots, x_n) = (0, f(x_2), \cdots, f(x_n));
 \]
3. on the cube \([n - 1, n] \times [0, 1]^{n-1} \) the map \(\phi_n \) is affine.

Proof. We will use the following properties of the map \(h \) defined in (2):

1. \(h \) is a piecewise affine rigid map;
2. if \(y \geq 0 \) and \(x \leq 0 \) then \(h(x, y) = (x, f(y)) \);
3. if \(x \geq 1 \) and \(y \in [0, 1] \) then \(h(x, y) = (y, 1 - x) \).

We prove the theorem by induction on \(n \). In the case \(n = 2 \) the claims are direct consequences of the properties of \(h \). We assume now that the theorem holds true for \(n \), and we prove it for \(n + 1 \).

Claim (i) is a consequence of the fact that the composition of piecewise affine rigid maps is again a piecewise affine rigid map.

To prove (ii) we compute, for any \(x_2, \cdots, x_{n+1} \in [0, 1] \),

\[
\begin{align*}
\phi_{n+1}(0, x_2, \cdots, x_{n+1}) &= \phi_n(h^1(1 - n, x_{n+1}) + n - 1, x_2, \cdots, x_n, h^2(1 - n, x_{n+1})) \\
&= (\phi_n(0, x_2, \cdots, x_n), f(x_{n+1}))
\end{align*}
\]

since \(1 - n \leq 0 \leq x_{n+1} \), by property 2 of the function \(h \) we have \(h(1 - n, x_{n+1}) = (1 - n, f(x_{n+1})) \), hence we continue

\[
= (\phi_n(0, x_2, \cdots, x_n), f(x_{n+1}))
\]

and by the induction hypothesis

\[
(0, f(x_2), \cdots, f(x_n), f(x_{n+1}))
\]

which is the claim.

Let us conclude by proving (iii). Let \(x_1 \in [n, n + 1] \) and \(x_2, \cdots, x_{n+1} \in [0, 1] \). We have

\[
\begin{align*}
\phi_{n+1}(x_1, x_2, \cdots, x_{n+1}) &= \phi_n(h^1(x_1 - n + 1, x_{n+1}) + n - 1, x_2, \cdots, x_n, h^2(x_1 - n + 1, x_{n+1})) \\
&= (\phi_n(0, x_2, \cdots, x_n), f(x_{n+1}))
\end{align*}
\]
since \(x_1 - n + 1 \geq 1 \) and \(x_{n+1} \in [0,1] \), by the property 3 of \(h \) we find that \(h(x_1 - n + 1, x_{n+1}) = (x_{n+1}, n - x_1) \), hence
\[
= (\phi_n(x_{n+1} + n - 1, x_2, \cdots, x_n), n - x_1);
\]
since now \(x_{n+1} + n - 1 \in [n-1, n] \), by the induction hypothesis we conclude that \(\phi_{n+1} \) is affine on this region. ■

3 The pyramid construction

Let us start with some notations. Let \(f \) be as in the previous section. For every \(x = (x_1, \cdots, x_n) \) we order the real numbers \(f(x_1), \cdots, f(x_n) \) so that
\[
f(x_i) \leq f(x_{i_2}) \leq \cdots \leq f(x_{i_n}).
\]
We then define \(v: [0,1]^n \to \mathbb{R}^n \) as
\[
v(x) = (f(x_1), f(x_2), \cdots, f(x_n)).
\]
Note that for \(v(x) = (v^1(x), \cdots, v^n(x)) \) we have
\[
v^1(x) = \min_{i=1,\cdots,n} \{f(x_i)\}, \quad v^n(x) = \max_{i=1,\cdots,n} \{f(x_i)\}
\]
\[
v^k(x) = \max_{i_1,\cdots,i_{k-1}} \left[\min_{\ell\neq i_1,\cdots,i_{k-1}} \{f(x_i)\} \right], \quad k = 2, \cdots, n - 1,
\]
in particular, when \(n = 3 \),
\[
v^2(x) = \max \{\min \{f(x_1), f(x_2)\}, \min \{f(x_1), f(x_3)\}, \min \{f(x_2), f(x_3)\}\}.
\]

Theorem 2 (pyramid construction) Let \(Q = (0,1)^n \subset \mathbb{R}^n \). The map \(v: Q \to \mathbb{R}^n \) defined above, has the following properties

(i) \(v \) is a piecewise affine rigid map;
(ii) \(v(Q) \subset (0,1/2]^n \subset \{x \in \mathbb{R}^n : x_1 > 0\} \);
(iii) \(v(\partial Q) \subset \{x \in \mathbb{R}^n : x_1 = 0\} \), meaning that \(v^1 = 0 \) on \(\partial Q \).

Proof. The map \(v \) is constructed as the composition of piecewise affine rigid maps, so it is piecewise affine rigid. The second property is a consequence of the fact that if \(x_1, \cdots, x_n \in (0,1) \) then \(f(x_1), \cdots, f(x_n) \in (0,1/2] \). If we take \(x \in \partial Q \) we know that at least one component \(x_k \) of \(x \) is equal to either 0 or 1. So \(f(x_k) = 0 \). Since \(f(x_j) \geq 0 \) for every \(x_j \in [0,1] \) we conclude that \(f(x_k) = 0 \) is the first component of \(v(x) \). ■
4 The solutions to the Dirichlet problem

Now we are going to construct a locally piecewise rigid map $w: [0, +\infty) \times \mathbb{R}^{n-1} \to \mathbb{R}^n$ with zero boundary condition.

First we consider the zigzag function $F: \mathbb{R} \to \mathbb{R}$ which is defined by the conditions
\[
\begin{align*}
F(t) &= 2f(t/2) = \min\{t, 2 - t\}, \quad \text{when } t \in [0, 2], \\
F(t) &= F(t + 2), \quad \text{for every } t \in \mathbb{R}.
\end{align*}
\]
We also consider the affine map $x \mapsto Jx + a$, with $J \in O(n)$, $a \in \mathbb{R}^n$, such that (as mentioned in Theorem 1)
\[
\phi_n(x) = Jx + a \quad \text{when } x_1 \in [n - 1, n] \text{ and } x_2, \ldots, x_n \in [0, 1].
\]
Define, for $k \in \mathbb{Z}$, the vector $b_k \in \mathbb{R}^n$ as
\[
b_k = \sum_{j=k}^{+\infty} \frac{J^{-j}}{2^{j+1}} a',
\]
where $a' = (n - 1, 0, \ldots, 0) + J^{-1} a$.

Let $H = (0, +\infty) \times \mathbb{R}^{n-1}$. Given $x \in H$ there exists $k \in \mathbb{Z}$ such that
\[
(n - 1)2^{-k} \leq x_1 < (n - 1)2^{1-k}.
\]
Then, for such a point x, we define
\[
w(x_1, \ldots, x_n) = 2^{-k} J^{-k} \phi_n(2^k x_1 - n + 1, F(2^k x_2), \ldots, F(2^k x_n)) + b_k,
\]
where ϕ_n is the map considered in Theorem 1, while for $x_1 = 0$ we define
\[
w(0, x_2, \ldots, x_n) = 0 \quad \text{for all } x_2, \ldots, x_n \in \mathbb{R}.
\]

Theorem 3 (solution in the half space) Let $H = (0, +\infty) \times \mathbb{R}^{n-1}$. The map $w: \overline{H} \to \mathbb{R}^n$ is locally piecewise affine in H and it is rigid on \overline{H}. Moreover $w(\partial H) = 0$.

Proof. We first want to check the continuity of w on the planes $x_1 = (n-1)2^{-k}$, for every $k \in \mathbb{Z}$. So let x be a point on such a plane and let us check that
\[
w(x_1, x_2, \ldots, x_n)
= 2^{-k-1} J^{-k-1} \phi_n(2^{k+1} x_1 - n + 1, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + b_{k+1}. \quad (3)
\]
With the substitution $x_1 = (n - 1)2^{-k}$ in the definition of w, the left hand side of (3) becomes
\[
2^{-k} J^{-k} \phi_n(0, F(2^k x_2), \ldots, F(2^k x_n)) + b_k;
\]
by Theorem 1, since $F(t) \in [0,1]$ for all t,

$$= 2^{-k} J^{-k}(0, f(F(2^k x_2)), \ldots, f(F(2^k x_n))) + b_k$$

and by the identity $f(F(t)) = F(2t)/2$

$$= 2^{-k-1} J^{-k}(0, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + b_k.$$

While the right hand side of (3) is, for $x_1 = (n-1)2^{-k}$, equal to

$$2^{-k-1} J^{-k-1}\phi_n(n-1, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + b_{k+1};$$

since $F(t) \in [0,1]$ for every $t \in \mathbb{R}$, by Theorem 1 we can replace ϕ_n with the affine map $Jx + a$, and get

$$= 2^{-k-1} J^{-k-1}[J(n-1, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + a] + b_{k+1}$$

$$= 2^{-k-1} J^{-k}(n-1, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + 2^{-k-1} J^{-k-1}a + b_{k+1}$$

$$= 2^{-k-1} J^{-k}(0, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + 2^{-k-1} J^{-k-1}a + b_{k+1}$$

$$= 2^{-k-1} J^{-k}(0, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + 2^{-k-1} J^{-k}a + b_{k+1};$$

by recalling the definition of b_k, we obtain, as desired

$$= 2^{-k-1} J^{-k}(0, F(2^{k+1} x_2), \ldots, F(2^{k+1} x_n)) + b_k.$$

So the map w on $H = (0, +\infty) \times \mathbb{R}^{n-1}$ is locally piecewise affine and rigid. We now inspect the boundary values of w. Take any $k \in \mathbb{Z}$, and $i_2, \ldots, i_n \in \mathbb{Z}$. We have

$$w(2^{-k}(n-1), 2^{-k} i_1, \ldots, 2^{-k} i_n) = 2^{-k} J^{-k} \phi_n(0, F(i_1), \ldots, F(i_n)) + b_k;$$

by Theorem 1 we get

$$= 2^{-k} J^{-k}(0, f(F(i_1)), \ldots, f(F(i_n))) + b_k;$$

now notice that $F(i_k)$ is either 0 or 1 hence $f(F(i_k)) = 0$, so we find

$$= b_k.$$

Now since $b_k \to 0$ as $k \to +\infty$ and w is Lipschitz continuous, we conclude that $w \to 0$ at every point of ∂H and hence is continuous on the whole set \overline{H}.

Theorem 4 (solution in the cube) Let $Q = (0,1)^n$, w be as above and v as in Section 3. The map $u = w \circ v : \overline{Q} \to \mathbb{R}$ is locally piecewise affine in Q and it is rigid on \overline{Q}. Moreover $u(\partial Q) = 0$.

6
Proof. The map \(w \) of Theorem 3 is a Lipschitz solution to the Dirichlet problem

\[
\begin{aligned}
Dw & \in O(n) \quad \text{a.e. in } H \\
 w &= 0 \quad \text{on } \partial H
\end{aligned}
\]

where \(H \) is the half space of \(\mathbb{R}^n \). Since \(u = w \circ v \), we clearly have that \(u \) is rigid and so \(Du \in O(n) \) a.e. Moreover since \(v(\partial Q) \subset \partial H \) and \(w(\partial H) = 0 \), we get the condition \(u(\partial Q) = 0 \).

Notice that we have solved a more precise problem, namely

\[
Du(x) \in \Pi(n) \subset O(n)
\]

where \(\Pi(n) \) is the set of permutation matrices whose non zero entries are \(\pm 1 \). In particular we have used at most \(n!2^n \) different matrices in the construction of \(w \) and \(v \).

References

Bernard DACOROGNA, Section de Mathématiques, EPFL, 1015 Lausanne, Switzerland.
Paolo MARCELLINI and Emanuele PAOLINI, Dipartimento di Matematica, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy.