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In this article we study the existence of solutions for (P) inf(j, f(Vu(x)) dx; u E 
ug + w:qn; IRrn)}, where f satisfies a + blFID < f(F)< c+dJFI’ for some 
a,cEIR, d> b > 0 and p > 1. Let (QP) inf(j(, Qf(Vu(x))dx; u E 
u, t WiSP(f2; I?“)), where u= sup{ @: @ <J @ quasiconvex). We show that 

Theorem. inf(P) = inf(QP). More precisely, for every ti E a,, + Wi-p(O; IR’“), 
there exists (us I,“=, such that 

us E u. t w;-ysz; W), 

us - zi weakly in W’.P(R; IRm), 

( f(W(x)) dx + [ Qf(Vii(x)) dx. 
.n ‘0 

In this article we are concerned with existence of solutions for 

inf [ f(Vu(x)) dx; u E u,, + Wi*p(12; iRm) 
I -0 

where 

(i) J2 is a bounded open set of iR”; u: R c IR” + IR”’ and hence 
vu E IRnm, 

(ii) W1-p(O; IRm) = (24 = (u, ,..., u,): uj E Lp(R), graduj E LP,(J?) j = 
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1 ,**-, m} and u,, E W’*“(R; Rm) is given, By u E u0 + W~*p(D; R”) we just 
mean that u E WiVp(R; Rm) and u = u0 on 8Q in a certain generalized sense 
(see Adams [ 1 ] for details), 

(iii) f: R”m + R is continuous and satisfies, for every FE R”“‘, the 
following coercivity condition 

t*> 

(We will see later that our result allows much more general growth 
conditions at infinity than (*); we will merely require thatfgrows faster than 
linearly at infinity with respect to, at least, one of the subdeterminants of the 
matrix F E I?““.) 

Usually to prove the existence of solutions for (P) one tries to show that 
the functional 

Ftu, 0) = .r, f(Vu(x)) dx to.11 
is lower semicontinuous with respect to some type of convergence (for 
example, weak convergence in W’*p), i.e., 

F(u, 0) < lim inf F(u,, Q), 

u, - u in W’,p. 
u-w 

(Throughout this article we use - to denote weak convergence.) 
Property (0.2) coupled with the coercivity condition (*) leads to the 

existence of solutions for (P). This method is called the “direct method” (in 
the calculus of variations). However, in order to ensure (0.2) one has to 
impose some kind of convexity condition on J More precisely Morrey 
[ 10, 111 has shown that a necessary and sufficient condition onffor F to be 
lower semicontinuous with respect to weak convergence in W’*p is that f be 
quasiconvex, i.e., 

f f(F + Vttx)) dx > f f(F) dx (O-3) 
-D -D 

for every bounded open set D c IR”, FE Rflm and r E Cr(D; R”‘) (the set of 
C? functions with compact support in 0). Condition (0.3) takes a pointwise 
form in some particular cases as, for example, 

(i) if n = 1 or m = 1, then convexity and quasiconvexity are 
equivalent concepts. In general (i.e., n, m > 1) one only has that if f is 
convex then it is quasiconvex; 
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(ii) another example is: if n = m and 

f(F) = DDE F) (0.4) 

then f is quasiconvex if and only if g is convex. 

Our aim is to study the existence of solutions for (P) precisely whenf fails 
to be quasiconvex; then, in general, (P) will not have any solution in W’+p, 
but we will prove that it has one in a “generalized” sense. More precisely we 
will show that if 

Qf = s:p { @ < f and @ quasiconvex) (0.5) 

and if 

(QP) inf 1 ef(Vu(x)) dx: u E u0 + WA*p(LS; IRm) 
I -0 t 

((QP) is then called the “relaxed” problem) then 

THEOREM. (i) Problem (QP) has a solution C E u,, + WiVp(f2; IR”‘) 

(ii) inf(P) = inf(QP); (0.6) 

in other words: for every solution ii of (QP), there exists a minimizing 
sequence {u~}~~~ of(P), us E u, + WA*P(R; IRm) such that 

us - U in W1.p(Q IRm), (0.7) 

I‘ f (W(x)) dx --t [ Qf(VG(x)) dx. (0.8) 
-0 -0 

Remark. If f does not satisfy growth condition (*) but, for example in 
the case n = m, f satisfies 

then the second part (ii) of the above theorem is still valid provided we 
replace (0.7) by 

det Vu” - det VU in LP(R). 

In view of the above theorem, we can conclude that (P) and (QP) are 
“equivalent” with respect to weak convergence and that solutions of (QP) 
are therefore “generalized” solutions of (P). From the point of view of 
applications such a result is interesting since in many physical applications, 
only averages of physical quantities are actually measured (thus the impor- 
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tance of weak convergence which measures some kind of averages). More 
generally Tartar (see [ 121 and the references quoted there) has pointed out 
the importance of weak convergence for modelling the relationship between 
microscopic and macroscopic quantities. In [4] it was shown how a 
particular case of the above theorem could be applied to the study of 
equilibrium of gases. Other applications to elasticity can be found also in ]9] 
(using the result of [S]). 

The notions of “generalized solutions” and “relaxation” theorems have 
been introduced by Young among others (see [ 131 for references) and have 
been used and developed in geometric measure theory (the notion of 
varifolds...) and in optimal control theory. The more specific result obtained 
in this article generalizes those of Ekeland and Teman [7, 81 and those 
already obtained in [4]. 

1. QUASICONVEXITY AND LOWER QUASICONVEX ENVELOPE 

In this section we will first give the main properties of quasiconvexity that 
we will need later; at the end of this section we will turn our attention to 
some properties of the lower quasiconvex envelope efof a given function f 
(see (0.5)). 

We mentioned in the Introduction that quasiconvexity arises naturally 
when one searches for necessary and sufficient conditions for lower semicon- 
tinuity under some type of convergence. We give here one typical result 
involving weak convergence (see Morrey [ 10, Ill). 

THEOREM 1. Letf: Rnrn + R be continuous, let R be a bounded domain 
of R”, and 

F(u, Q) = I’ f(Vu(x>) ah. (1.1) 
-0 

If F(u, Q) is lower semicontinuous with respect to weak convergence in 
W’*“(R; Rm) p > 1 in any 0, then f is quasiconvex, i.e., 

1' f (F + VY(x)) dx 2 f VI meas fl (1.2) 
-0 

for any F E Rnm, any bounded domain l2 c R” and any 4 E CF(Q; R “). 
Conversely iff is quasiconvex and satisfies for some ,a E R and K > 0 

(i) f(F) > p for every F E R ‘“‘, 

(ii) If(F)-f(G)1 < K(l +IFIP-’ + IGlp-‘) IF-G1 for every 
F, G E R”“, 
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then F(u, 0) is lower semicontinuous with respect to weak convergence in 
W’-yL!; I?). 

Although as seen in Theorem 1 quasiconvexity is a “natural” condition 
when one works in higher dimension (n > 1, m > 1) it is not very easy to 
handle, since it is not in a pointwise form, however, it implies a well known 
condition the so-called Legendre-Hadamard (or ellipticity) condition (for a 
proof of the next Theorem see [ 10, 1 l] or [ 21). 

THEOREM 2. Every quasiconvex function f is rank one convex, i.e., 

SW + (I- 2) G) < AfCf(F) + Cl- 2) f(G) (1.3) 

for every A E [0, I], F, GE IF?““’ with rank(F - G) < 1. Furthermore if 
f E C’(IR”“‘) then (1.3) is equivalent to the Legendre-Hadamard condition 

Remark. (i) The terminology used by Morrey for quasiconvexity and 
rank one convexity is somehow confusing; in [lo] rank one convexity is 
called weak quasiconvexity while in [ 111 quasiconvexity is called strong 
quasiconvexity and rank one convexity is defined as quasiconvexity. We will 
use throughout this article the terminology of Ball [ 2, 3 1. 

(ii) Summarizing our notions we have the following diagram 

f convex Z- fquasiconvex *frank one convex; 

the converse of these implications being: an open problem for the second one 
and false for the first one as the example f(F) = det F shows. 

There are some particular cases where quasiconvexity and rank one 
convexity are known to be equivalent; they are listed below (for a proof see 
[ 10, 111 or [6] Theorem 5.6 and 5.7). 

THEOREM 3. (i) If n = 1 or m = 1, then convexity, quasiconvexity and 
rank one convexity are equivalent. 

(ii) If n = m and there exists g: IR -+ iR continuous such that 

f(F) = g(det F) (1.5) 

then the convexity of g, the quasiconvexity and rank one convexity off are 
equivalent. 

(iii) Zfm = n + 1, D: IR”(“+‘) + iR”+’ is such that 

D(F) = (D,(FL D,+l(F)) 
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with 

D,(F) = (- 1)” + ’ det(pk), (1.6) 

where E, is the n x n matrix obtained by suppressing the k-th line in the 
n(n + 1) matrix F, and zfg: IR”+’ -+ [R is continuous and such that 

f(F) = g(W)) 

then the convexity of g, the quasiconvexity and rank one convexity off are 
equivalent. 

Remark. Part (ii) of the Theorem is just a particular case of a result we 
will mention later. 

Closely related to the notion of quasiconvexity is the notion of null 
Lagrangians which by definition are functions # such that @ and -@ are 
quasiconvex, they have the following properties (see [2,3]). 

PROPOSITION 4. The following properties are equivalent 

(i) Cp is a null Lagrangian. 

(ii) For every bounded domain R c II?“, for every FE IR”” and for 
every <E Cr(s2; IRm) 

JO @(F + V<(x)) dx = I, Q(F) du. (1.7) 

(iii) @ is rank one afine, i.e., 

@(AF+(l-I)G)=M(F)+(l-A)@(G) (1.8) 

forevery1E[O,l],F,GElR”“‘withrank(F-G)<l. 

(iv) Let adjs F denotes the matrix of all s x s (1 Q s < inf{ n, m}) 
subdeterminants of the matrix FE I?““‘, then 

infln.ml 

W’) = A + c (B, ; a$ F),(,, , (1.9) 
s=1 

where 

o(s) = ; : = ( )( 1 m! n! 
s! (m -s)! s! (n -s)! ’ 

c.7 *)Ow denotes the sclar product in IRU(“, A E IR and B, E IR*(S’ are 
constants. 
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Remark. (i) If m = n = 2, then (1.9) can be rewritten as 

@(F)=A + i ByF,+B,detF. 
i,j=l 

(ii) The Euler Lagrange equations for the functional se @(Vu(x)) dx 
reduce to an identity if @ is a null Lagrangian. 

We now turn our attention to lower quasiconvex envelopes; recall that if 
f: R”“’ + IR is continuous, we have defined Qf by 

QJ = sip { @ < f, @ quasiconvex}, (1.10) 

we then have the following theorem 

THEOREM 5. Let D c IR” be a hypercube and for every FE IR”” let 

Q’f(F) = inf 
I 

f(F+V@x))du:~EC,m(D;~"') . (1.11) 
I 

Suppose furthermore that f satisfies the following condition 

a<f(F)<b+cIFI” 

for some a, b E R, c > 0, p > 1 and for all FE R”“‘; then Q’f is continuous 
and Q’f = w 

Proof. The proof is decomposed in four steps. 

Step 1. We show first that Q’f is continuous. Let HE lRnm and E > 0 be 
arbitrary, we then have by definition that there exist <, cp E C,“(D; R”‘) so 
that (we take D to be the unit hypercube) 

I J Q’f(F) - 1 f (F + V<(x)) dx < e/2, 

Q’f(F + H) - J, f (F + H + vcP(X)) dx G &j2- 

Since f is continuous, then by choosing IH( small enough we have 

(1.13) 

I j . f(F+H+Vc(x))dx-j f(F+VG))~ 9:~ (1.14) 
D D 

f (F + H + V&x)) dx - I f (F + vrP(x)) dx Q $* (1.15) 
D 
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Using the definition of Q’f we get 

Q’f(F) < I,f(F + vcp(x>) dx 

Q’f(F + H) < jD f(F + H + V&x)) dx. 

(1.16) 

(1.17) 

Using (1.17) and (1.12) we get 

Q’f(F+ H) - Q’fV9 

applying (1.14) to (1.18) we obtain 

Q’f(F + H) - Q’fF’) < E. (1.19) 

Similarly using (1.16), (1.13) and (1.15) we obtain 

Q'fW - Q'f(F + H) 

< jD f(~ + v~(x)) du - I, f(F + H + V&x)) dx + + G E. (1-2o) 

Thus Q’f is continuous. 

Step 2. We next want to show that the definition of Q’f is independent 
of D. Let D, and D, be two hypercubes of R”, then there exist A > 0 and 
x0 E IF?” so that D, = x0 t ID, (up to a rotation). Let for FE R”“’ 

Qif(F) = i:f ’ 
I J 

. 
meas D, 

f(F+ Vc(x))&: lE Cr(D2; Rm) 
D2 

Then for every < E Cr(D, ; R “) we have 

Q;f(F) < mea; D j f(F + %Xx)) do 
2 D2 

(1.23) 
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therefore 

QSf(F) S ' j" A" meas D, f(F + VW) dx x,+~~, 

1 . = 
meas D, I f(~ + v&x, + hv)) dve D, 

(1.24) 

Observe that for every cp E CF(D, ; W) we have that 

(1.25) 

Therefore apply (1.24) to the function r defined in (1.25) to get 

(1.26) 

taking the infinimum in (1.26) over every rp E CF(D, ; I?“‘) we get 

QSf(F) S QSV>. 

Similarly one gets that Q; f & Q;f: 

Step 3. Let D be the unit hypercube; we now want to show that for 
every FE I?““’ and for every q~ E Cr(D; R”‘) we have 

J, QW’+ Vrp(y)) dy 2 ?, Q’f(F) dy = Q’f<r;>. (1.27) 

For every E > 0 we can approximate q~ E C,“(D; Rm) by a piecewise afftne 
function w E WA*“(D; R”) (see Proposition 2.1 p. 286 in [8]) such that 

II D Q’f(F + Vdx>> dx - 1 QW+ Vv(x)> dx S $. (1.28) 

Since w is piecewise tine we may decompose D into open subsets Di, 
l<i<N,andfindAiER”“sothat 

Vty=A, in Di 

and 

meas Di Q’f(F + A i)* (1.29) 
i=l 
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We now use the definition of Q’f to get C E C,“(Di; R”‘) 1 < i < N such 
that 

Q'f(F+Ai)+s) ' I meas Di 
f(~ + Ai + VC(X)) dx, 1 < i < N* (1.30) D( 

We then define x: D -+ R” by 

XCx) = WCx) + <Lx) for xE Di. (1.31) 

Observe that x E W~3m(D; R”); therefore there exists 2 E Cc(D; R”‘) so 
that 

/j 
f(~ + vx(x)) dx - 1. f(F + V-G>> dx < +. (1.32) 

*D "D 

Combining (1.29) and (1.30) we get 

6 _ j f(F+Vx(x))d+j Qlf(F+W(xW+;~ (1.33) 
i-1 Di D 

i.e., 

1 
D 

j-(~ + Q(X)) a!x < _) 
D 

QY(F + W(x)) dx + f - 

Now use (1.32) and (1.28) in (1.33) to obtain 

I’ f(F + VZ(x)) dx < I’ Q’f(F + &J(X)) dx + E; 
-D -D 

(1.34) 

since E > 0 is arbitrary and Z E Cr(D; Rm) we deduce (1.27). 

Step 4. We are now able to complete the proof of the theorem. 

(i) We want first to show that Q’f is quasiconvex. Let B be any 
bounded open set of F?“, rp E Cr(I2; Rm) and FE R”‘“. We want to prove 
that 

I, Q’f(F + V&4) h > I,, QY(F) dx. (1.35) 

Let D be a hypercube containing R and extend cp to be identically 0 in 
D - n then apply Step 3 (and Step 2 which shows that the definition of Q’f 
is independent of D) to get 

580/46/l 8 
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ju Q~(F + vq(x)) dx = i, Q’ftF + P(x)) dx - jD- R Q ‘f(F) dx 

> . 
J D 

Q’f(F)dx-j Q'fW dx. (1.36) D-D 

(ii) It finally remains to prove that Q,f= m Let h <f be 
quasiconvex we then deduce from the definition of the quasiconvexity of h 
that 

Q’h = h. (1.37) 

Since h < f we also have 

h=Q’h<Q’f<f (1.38) 

for every quasiconvex function h <L hence Qf < Q’f. Since Q’f is also 
quasiconvex we deduce the result. 1 

2. MAIN RESULT 

We now set the hypotheses and prove the main theorem. The basic 
assumption we will have to make is that f is continuous and grows faster at 
infinity than linearly with respect to at least one of the subdeterminants of 
the matrix Vu E R”“‘. More precisely we will assume that 

(Hl) R c R” is a bounded open set with Lipschitz boundary, 
(H2) f: R nm + R is continuous and satisfies the following coercivity 

condition 

Q t i b, 1 cD”(F)I”~~ < f(F) < c t f d, 1 cD,(F)~‘~’ 
u=l v=l 

for every FE Rnm, for some a, c E R, N > 1 (an integer), /I, > 1, d,, > b, > 0 
and where CD,: R”“’ + IF?, v = l,..., N, are null Lagrangians. 

EXAMPLE. (i) The case where f satisfies a condition 

a t b IFI4 <f(F) Q c t d/Fl’ 

is a particular case of (H2), it suffices to choose N= no, p, =/I > 1, d, = 
d > b, = b > 0 for v = l,..., N and for F = (Fij), ~i~n,,~j4m 
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Q,(F) =F1, ,*a., Q”(F) =Fnl 

@n+,(F) = F,z,..., G(F) = F,,‘,z 

. . . . . . . . . . . . . . . . . . 

. ..) @n,(F) = F,, a 

(ii) Another case contained in (H2) is the case where n = m and f 
satisfies 

then choose N= 1, Q,(F) = det F. 

Remarks. (i) Hypotheses (Hl) and (H2) are equivalent to those 
considered by Ekeland and Temam [8, Chap. X], where functionals of the 
form J”o f(gradu(x)) d x, U: R c R” + R (i.e., m = 1) are studied, and to those 
considered in [4], where the functionals have the form ,(nf(@(V~(x))) dx, 
KQCR3-+lR3 and @ is a null Lagrangian. However, the coercivity 
condition (*) is too strong to include the case of parametric problems, in 
particular that considered in [5], where the functional has the form 
J*j-(D(Vu(x))) dx, u: R c I?“-+ I?“+’ and D is as in Theorem 3; in these 
problems (*) is satisfied only for /3, = 1, v = l,..., N (while in (H2), p,, > l), 
since f is positively homogeneous of degree 1. 

(ii) Observe that 

h(F) = a + f b,, ) @,(F)j4t’ 
u=l 

is quasiconvex and hence 

RELAXATION THEOREM. Under the above hypotheses we have that, for 
every u E W’300(Q; IR”‘) with u = u,, on lX2(u, E W’SW(12; [R”‘)) there exists 
W}E,; us E W’*m(R; IRm) such that 

(i) us = u0 on af2 for every s > 1, 
(ii) @,(VzP) -\ @“(Vu) in L4f12), v = l,..., N, as s + co, 

(iii) In f(Vu’(x)) dx -+ Ia ef(Vu(x)) dx as s -+ co. 

Remark. Observe that iffsatisfies the coercivity condition of Example 1 
above, i.e., 
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then the conclusion (ii) of the above theorem means that 

us - u in W1*D(R; Rm). 

Proof of Theorem. Fix q > 0 and first observe that there is no loss of 
generality if we suppose u piecewise affine in a. Otherwise we may find 
0 c Q, an open set, and w E W’,m(R; Rm) such that (see Prop. 2.9, Chap. X 
in [81) 

meas(I2 - 0) < n, (2.1) 

w is piecewise affine in 0, (2.2) 

w = u. on 6Y2, (2.3) 

14x) - 44 G rl for all x E R, (2.4) 

IIVW - vu IILP G rl for all p> 1. (2.5) 

So if we can prove the theorem for w and 0, by extending us outside 0 by 
us = u we will have proved the theorem for every u E W’7m(fi; R”). 

Since u is piecewise affme in Q we may decompose R into open sets Ai 
1 < i < Z so that Vu is constant in Ai. Then decompose Ai into small 
hypercubes Rf’ 1 < p <Pi so that 

(2.7) 

But on each R+’ we have 

QJ(Vu)=i; ’ . 
I J meas Ry 

f(vu + v<(x)) dx: <E CF(R;; Rm) 
Ry 

Therefore there exists {&}T=, , <, E Cr(Rf; Rm) so that for q large enough 

. 
RP 

f(vu + W&)> dx - lRp QfCVu> dx G &a 
, I 

(2.8) 

Now extend & by periodicity (in each variable) from RP to the whole of 
R” and let for s an integer 

(2.9) 
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We obtain from (2.9) that 

!P~,,(x) = 0 if x E 8Rg (since C& is periodic and & E CF(Rj’; IRm)) (2.10) 

vyJ-4 = VY&x>. (2.11) 

We now use the coercivity condition (H2) on f (and Qj); from (*) we 
deduce that {@“(Vu + V&J},“, is bounded in Lbu(Rf) (and /I, > 1) for every 
v=l ,..., N. Therefore there exist 6, E Lbu(Rf’) so that (up to a subsequence) 

@“(VU + VY&)> - d”(X) in L4$Rp), v = l,..., N as q-+ 0~). (2.12) 

Observe also that since CD, is a null Lagrangian and & E CF(Rp; F?“) we 
have 

1 &(x) dx = ;il jRF @,(vu + v<,,(x)) dx = jRp Qp,(Vu), v = I,..., N. 
R; 

(2.13) 
I I 

As we extended <, by periodicity (in (2.9)), we do it for 6, (in each 
variable) from RP to the whole of R”; we therefore deduce that 

‘IJ(‘~) - ,,,‘, RP j d”(X) dx = @“(VU) in LDl(RP), v = l,..., N. 
I Rf 

We then take the diagonal sequence of (2.12) and (2.14), to get 

@“(VU + VY,(sx)) - @“(VU> in L”u(Ry), v = l,.., N. 

Summarizing (2.9), (2.10) and (2.15) and defining for x E RP 

US(X) = u(x) + ‘u,,,(x) = u(x) + f &(sx), 

we have obtained 

US(X) = u(x) for xE 8Rq, 

@,(VrP) - @“(VU) in LOu(Rf’), v = l,..., N. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

We therefore have defined us on Rf, and hence on (J,‘L, Rj’ (using (2.17)). 
By letting us = u on Ai - U,‘L, Rf, we have then constructed us on Ai 
1 < i < I, and thus on R = Uf=, Ai. Obviously from the construction of us 
and from (2.18), us has the required properties (i) and (ii); so it only 
remains to prove (iii) 
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cmwx)) dx - j f(VuS(x>> l-ix 
cl 

We now use (2.6), (2.7) and the fact that us = u on di - u,‘~, Rf’ to get 

. II ef(Vu(x)) dx - j f(W(x)) dx a R 
<f+ i 5 j ~(vu,dx-jR~f(vu’(x))dx . (2.20) 

(=I p=l Rf I 

Finally observe that 

j 
Rf 

f(VuS(x>) dx = jpFf(vu + VYs(sx)) dx 
I 

= f j f(Vu + V<,(Y)) 4 
SRY 

= “p + V&(Y)) 45 J, 

the last equality being a consequence of the periodicity of <,. 
Therefore using (2.8) and (2.21) we get 

combining (2.20) and (2.22) we obtain the result. 1 

(2.21) 

(2.22) 

CONCLUSIONS 

(i) We deduce from the Theorem that 

inf(P) = inf(QP) 
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(see the introduction for the definition of (P) and (QP)). However, in general 
the hypothesis (H2) is not sufficient to guarantee the existence of solutions 
for (QP); but iff satisfies the following particular form of (*) 

a + b IFI <f(F) < c + d IF’/’ (2.23) 

with /3 > 1, then the direct methods of the calculus of variations imply that 
(QP) possesses a solution (see [ 11 I). Similarly if n = m = 3 and f(F) = 
g(det F) then (QP) possesses also a solution (see [4] for details). 

(ii) We have seen in the Introduction the interpretation that one can give 
to the above theorem; some applications of this type of results to elasticity 
can be found in [4] and in [9], 

(iii) The result obtained in the above theorem should be extendable to 
functionals of the form (, f(x, u(x), Vu(x)) dx (with appropriate continuity 
and coercivity conditions on f) since the important dependence is that on Vu 
(by Rellich’s theorem). 

(iv) The proof of the above theorem is shorter and simpler than those in 
[7, S] (there the functionals have the form In f(gradu(x)) dx, u: R c I?” + R 
and therefore r2f = f **, the lower convex envelope off) and in [4] (there 
f(Vu(x)) = g(@(Vu(x))) with u: R c [R3 -+ IR3 and CD a null Lagrangian, 
therefore m = g **, the lower convex envelope of g), although these two 
results [4, 81 are particular cases of the above theorem. However, they are 
more constructive since the minimizing sequences {u’)~=, are constructed 
explicitly. 

(v) Finally it is interesting to note that while in [4, 7, 81 it was sufficient 
to consider <, (see (2.8)) which were linite sums of characteristic functions, 
it is not sufficient in the general case considered here. 
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