
B DACOROGNA 

On rank one convex functions which are 
homogeneous of degree one 

ABSTRACT 

Let f: IR 2 x
2 ~ IR be positive! y homogeneous of degree one. If, in addition, f is rotatio

nally invariant and rank one convex, then it is necessarily convex. 

1. INTRODUCTION 
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Let 
l(u)= ff(Vu(x)}ix (1.1) 

n 

where: 

i) .Q c IR 2 is a bounded open set 

ii) u: .Q ~ IR 2 and hence Vu EIR2
x

2 

iii) f: IR zxz ~ IR is continuous. 

As it is weil known (c.f. Morrey [8], Bail [2] or Dacorogna [3]), in order to study 

minimization problems involving (1.1) one has to impose sorne convexity hypotheses 

on f. Besides the usual convexity notion, one introduces the following conditions. 
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Definitions: 

1) f: fR zxz --7 IR is rank one con v ex if 

f(ÀA + (1- À )B) S:: Âf(A) + (1- À)f(B) (1.2) 

for every À E [0, 11 A, B E IR zxz with det(A- B) = 0. 

2) f: IR zxz --7 IR is quasiconvex if 

f f(A + Vqy(x) }lx 2 f(A) measQ 
n (1.3) 

3) f: fR zxz --7 IR is polyconvex if there exists g: IR zxz x IR --7 IR con v ex su ch that 
for every A E IR zxz 

f(A) = g(A, detA). 
(1.4) 

In general one has 

f convex ~ f polyconvex ~ f quasiconvex ~ f rank one con v ex. 

Recent! y a considerable effort was made to extend the results of Goffman and Serrin 

[7] to quasiconvex integrands (c.f. for example Fonseca-Müller [6] and their 

bibliography). One then needs in particular to know if there are positively 

homogeneous functions of degree one that are quasivoncex but not convex. Such 

functions where shown to exist by Müller [9], following earlier work of Sverak [10] 

and Zhang [12]. Müller shows his result using weak type estimates for Cauchy

Riemann operators. So his example is in sorne sense implicit. 

We show here that if one assumes in addition that f is rotationally invariant then 

Müller's result does not hold. More precisely. 
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Thcorcm 1: 

Let f: fR 2 x
2 

-7 IR be continuous and satisfying 

i) f(tA) = tf(A) for every t ~ 0 and every A EIR2
x

2 

ii) f is rotationally invariant, i.e. f(RAR') = f(A) 

for every A E IR2
x

2
' R,R' E o+ = {RR' = 1 and detR = 1} 

th en 

f rank one con v ex <::::> f con v ex. 

2 

Therefore such a result ru les out ali functions f(A) ='= g(IAI, detA) where 1 A 1
2 

= I A;~. 
i. ';j 

In terms of elasticity our theorem shows that no isotropie fonction dn be 

homogeneous of degree one and quasiconvex but not convex. 

We will also show that Theorem 1 can be slightly generalized. 

2. THE CASE OF ROT ATIONALL Y INVARIANT FUNCTIONS 

We start with the key !emma. 

Lemma 2: 

Let g: IR 2 
-7 IR be su ch th at 

i) g(tx,ty) = tg(x,y) for every t ~ 0 and x,y EIR 

ii) g is separately convex (i.e. g(x,-) and g(·,y) are convex for fixed x and fixed y) 

then g is convex. 
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i, j =l 
1 can be 

fixed y) 

Remark: 

For related results on separately convex functions see Tartar [11]. 

Proof: 

The proof is of an elementary nature. We have to show that given À
1 
,À

2 
~ 0 with 

À1 +À2 = 1, x"y"x2 ,y2 EIR then 

(2.1) 

In order to prove this fact we have to consider serveral cases. The idea is however 
essentialy included in the first case. 

Case 1: 

Assume that either x1x2 ~ 0 or y1y2 ~O. Since g is continuous (the fact that g is 

separately convex implies that g is continuous) it is enough to prove the result for 

x 1x2 > 0 or y1y2 > 0. We consider the case where x1x2 
> 0, otherwise we interchange 

the roles of x and y. We then let 

(since x1x2 > 0, then ais weil defined and equal + 1 or- 1). Using the properties of g 
we get 
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Using again the homogeneity of g we find 

which is nothing else than (2.1). 

Case 2: 

We now assume that x
1
x

2 
< 0 and y

1
y2 < 0 and that there exists i E{1,2} such that 

X; (À
1
X

1 
+ À

2
x

2
) ~ 0 and Y;(À

1
y

1 
+ À2y2

) ~O. Using again the continuity of g we may 

assume without loss of generality that À1X1 + À2X2 -:;; 0 and À1Y1 + À2Y2 -:;; O. 

W e adopt the notations th at À 3 = À 1 

À; + Ài+ l = À1 + À2 = 1. We then define 

a = X ; Yi+l - xi+t Y; 

Yi+t - Yi 

Jli 
Y; = [ ~c ... o- y~:· )r 

Ài+t (yi - Yi+ t) 

v i+ l = À; Yi + Ài+t Yi+t 

Y;+ t 

Note that since YiYi+l < 0, then Jli ~O. Furthermore Jli ~ 1, since 

1 _ Jli = -(1- Ài+l )Y; - Ài+ l Yi+l = 
Ài+t (yi - Yi+t) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Since Y;Yi+l < 0 and y;(Àiyi + Ài+l yi+ t) < 0 , we deduce that vi+l >O. We now show that 

vi+ l ~ 1, indeed 
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Hence we deduce that 

Observe that 

[
J.l,.(À,x; + Ài+ Ixi+ I) + (1- J.l;) X; =a 

J.l;(À;Y; + Ài+I Y;+I) + (l- J.l)Y; =O. 

Let us check (2.9), 

J.l;(À;X; + Ài+/Xi+J + (1- J.l;)X; = X; [1- f.l;(l- À;)]+ Ài+IJ.l;Xi+l 

= x;[ 1 - Ài+I /-L; J + Ài+I /-L; xi+I = x;[l - Y; ] + x i+I . Y; 
Y; - Y;+I Y; - Yi+I 

=a. 

(2.10) is verified similarly. 

We also note that 

[
vi+Ixi+ l +Cl- v;. , )a = À;X; + Ài+Ixi+I 

Vi+ rY;+r + (1- V;+r )0 = Vi+IYi+r = À;Y; + À;+rYi+l' 

(2 .12) is just a reformulation of (2.4). We now verify (2.11) 

(1 ) -À.:..::;Y_,_;x-'i-'-'+I_+_À--!..!.;+'-'1 Y_,_i+'-'-I_x.!..!.i+"'-1 _+_À_,_;("""y-'-'i+_,_I_--..:.y..:..:;)_a v; .,x;. , + - V;+r a = 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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We are now in a position to conclude to the convexity of g. 

By (2.11) and (2.12) we have 

g(À,x, +À2x2, À,y, +À2y2)=g(V;+,xi+l +(1- vi+l )a, vi+tYi+l +(1- vi+t)O) 

:S V;+ l g(x;+l'Yi+l)+(l- vi+l)g(a,O), 
(2.13) 

the inequality coming from the fact that yi+l · 0 ~ 0 and from Case 1. We then use (2.9) 

and (2.1 0) to write. 

g(a,O) = g(f.1;(À
1
x

1 
+ À2x2) + (1- f.l)X;, f.1;(À 1Y1 + À2Y2) + (1- f.l;)Y) 

:S f.l ; g(À
1
x

1 
+ À2x2, À1y1 + À2y2) + (1- f.l)g(x; , Y;), 

(2.14) 

the inequality coming from Case 1 and the fact that X;(À 1x1 + À 2x2 ) ~ 0 (by hypothesis 

of Case 2). 

Combining (2.13) and (2.14) we get 

[1- f.1;(1- vi+l)] g(À1x1 + À2x2, À1y1 + À2y2) 

:S vi+l g(xi+l' Yi+l) + (1- vi+ l )(1- f.l; )g(x;, Y;)· 

To conclu de to (2.1) i.e. the convexity of g we only need to show that 

We verify the first one (using (2.3) ,(2.4),(2.7)) 
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(2.15) 

(2.16) 

(2.17) 



and simil arly for (2. 17) since 

Thi s concludes Case 2. 

Case 3: 

We now assume that x1x2 < 0 and y1y2 < 0 and that there exists i E {1 ,2} with 

X;(À,x , + }c2x2)<0 and Y;Uc,y, + À2y2)< 0. 

Note first th at Cases 1, 2 and 3 cover all the possibilities, since by inverting the roles of 
i and i + 1, taking into account that x1x1+ 1 < 0, y1y1+ 1 < 0, the convexity inequality holds 

by Case 2 also fo r x1(À1x1 + À 2x2 )::; 0 and y1(À1y1 + À 2y2 ) ~O. In particular if 

y;(}c1y1 + }c 2y2) = 0, then the convexity inequality holds independently of t~e sign of 

x;(À
1
x

1 
+ Àyx-2 ). 

Therefore to establish (2.1 ) wh en Case 3 holds, we proceed exactly as in Case 2, the 

only point to be checked is that (2.14) holds also under the hypotheses of Case 3. 

Lett ing 

X1 = À 1X1 + Ài+l Xi + l' 

~ = À,. y,. + Ài+lyi+l' 

We have by hypothesis that X1X2 < 0, ~ l'; < 0 and by (2. 10) 

Using the above remark we deduce from Case 2, (2.2) and (2.9), that 

g(a, 0) = g(J11X1 + (1- J1)X2 , Jl;~ + (1- J11 )Y2 ) 

::; J11g(X" ~) + (l- Jl)g(X2 ,Y2 ) 
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which is nothing else than (2.14). The remaining part of the proof is then exactly the 

same as that of Case 2. Therefore the lemma is established. • 

We are now in a position to prove Theorem 1. 

Proof: 

i) f convex ~frank one convex. This is true for any function. 

ii ) frank one convex ~ f convex: Let g:IR2 ~IR be defined by 

( x YOJ· g(x,y) = f 0 

Since fis positively homogeneous of degree one and rank one convex, we·deduce that 

g is positive! y homogeneous of degree one and separately convex. Applying Lemma 2 

to g, we deduce that g is convex and so that f is convex when restricted to diagonal 

matrices. Using then a result of Dacorogna-Koshigoe [4], we conclude that f is 

convex on the whole of IR 2x
2

• • 

We now tum to an example 

Proposition 3: 

Let 

th en 
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{

A detA 
f(A)~ 1 l:a lAI if A 7:-0 

if A =0 

2 f rank one con v ex <=> f convex <=> Jal ~ -. 
3 



Remark: 

It is interesting to contrast this example with that of Dacorogna-Marcellini [5] (see also 

Alibert-Dacorogna [1]) 

f(A) = IAI4
- 2yiAI

2 
detA. 

ln this case the notions of convexity, polyconvexity and rank one convexity are diffe

rent (the exact values for which these notions hold are lrl $ 3.....[i, 1, ~ respectively). 
3 -v3 

Note also that if one looks for the simplest example of homogeneous function of 

degree two. one has 

ln this case we have that f is rank one convex (and polyconvex) for every y E IR, 

while it is convex if and only if lrl $2. Therefore a natural attempt to find a rank one 

convex (but not convex) and homogeneous of degree one function is t!le one of 

Proposition 3. However in view of Theorem 1 this fails to give the expected example. 

Pro of: 

The proof is elementary. Using Theorem 1 and again the result of Dacorogna-Koshigoe 

[ 4], the only thing to be checked is that 

if x= y= 0 

is separately convex if and only if lai$ 3_ . Since g is symmetric in x and y it is 
3 

enough to show that 

J2 2 
- 2 g(x,y) ~ 0 for every (x, y) =F (0,0) <==>lai$-. 
~ 3 

93 



This is true since (provided (x, y):;:. (0,0)) 

~ 1 2 2 
-a 2 g(x,y) = ( 2 2)s12 (x - 3axy +Y ). 

x x +y 

Obviously the right hand side is positive if and only if Jal~~. + 3 

3. SOMEGENERALIZATIONS 

We now show that Theorem 1 holds also for sorne non rotationally invariant functions. 

We first fix sorne notations. 

Notations : 

lxl 2 2 2 2 2 =x 1 +x 2 +x 3 +x 4 

det X= x1x4 - x2x3 

scal X= x1x2 + x3X 4 • 

We now assume that f satisfy the following. 

Hypothesis (H) : 

Let f : IR 4 = IR 2x 2 -j IR be continuous and positive! y homogeneous of degree one. 

Assume that there exists S EIR 4
x

4 invertible and 0:;:. A EIR
4 

such that 

det A= det(SA) =O. Finally let for X E IR 
4

, g: IR 
4 
-j IR 

g(X) = J(SX) 

and assume that g is rotationally invariant. 
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1ctions. 

~ree one. 

ch that 

Theorem 4: 

Let f satisfy (H) theo 

f rank one con v ex ~ f con v ex ~ g con v ex ~ g rank one con v ex. 

We immediately give examples of such functions. 

Corollary 5 : 

Let f: IR 4 
---7 IR be positive! y homogeneous of degree one and having one of the follo

wing forms 

1) /(X)= <p(jXj,detX) 

2) f(X) = <p(jXj,scalX) 

3) f(X) = <p(jXj, adetX + ~scalX) for sorne a,~ E IR\ {0} 

4) /(X)= <p(~x~ +x;, ~xi+ x;) 

for sorne <p: IR 2 
---7 IR. Theo 

f rank one convex ~ f con v ex. 

Remark: 

The first result is a consequence of Theorem 1. However aU the three other cases give 

ri se to functions which are not rotationally invariant. One can also imagine severa! 

other examples where Theorem 4 apply, such as (for a,~ E IR) 
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Proof of Corollary 5 : 

1) 

2) 

3) 

C.f. Theorem 1, si nee f is th en rotationally invariant. 

Let 

s~ [~ 
0 0 

~} 0 0 

0 1 

-1 0 

choose A= (1,0,0,0). Then Sand A are as in (H) and 

g(X) = f(SX) = cp(!SX!, scal(SX)) = cp(!X!, detX). 

Applying Theorem 4 and the first part of the Corollary we get the result. 

Let 
1 0 0 0 

0 
-a 

0 
{3 

~a2 +/32 ~a2 +{32 
S= 0 0 -1 0 

0 
{3 

0 
a 

~a2 +/32 ~a2 + 132 

Choose as before A= (1,0,0,0) and observe that for every X ElR
4 

{

IXI=ISXI 

a det(SX) + {3 scal(SX) = ~ a 2 + {3 2 
det X· 

In view of the above identities, we find 

We then apply Theorem 1 and Theorem 4 to obtain the claimed result. + 
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Remark: 

If we combine Proposition 3 and Corollary 5 we find that if 

{
/X/+ _q det X + fJ scal _! 

/(X)== /X/ if /X/ 7= 0 

0 if X== 0 
th en 

4 f convex <:::>frank one convex <:::> a 2 + /3 2 $-. 

9 

Proof of Theo rem 4 : 

Observe that since S is invertible we have trivially 

f convex <:::> g convex . 

From Theorem 1 we deduce that 

g convex <:::> g rank one convex. 

So if we show that 

frank one convex ~ g rank one con v ex, 

(3.1) 

(3.2) 

we will have proved the theorem (since trivial/y f convex"" frank one convex). 

(3.3) 

T o prove th at g i s rank one convex. we have to show that given X, Y E IR'" ~ IR' 
with Y~ 0 and detY ~ 0, then the function q>:IR --7 IR defined by 

cp(t) ==: g(X + tY) 

1s convex. (3.4) 
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Since g is rotationally invariant, there is no loss of generality in assuming that Y= A 

(where A is the matrix given in (H)). Indeed there exist R,R' ,Q,Q' eo+ such that 

y= R(j~j ~J R' 

A=Q(I~I OJ , Q. 
0 

t.e. 

Y= ::\ RQ' AQ'' R'. 
(3.5) 

Therefore we in fact on! y need to show that given any X E IR 
4 

then the function 

cp(t) = g(X +tA) (3.6) 

is con v ex for every t E IR. However, we have, by definition, 

cp(t) = g(X +tA)= f(SX + tSA). (3.7) 

Since f is assumed to be rank one convex (c.f. (3.3)) and that by hypothesis 

det SA = 0, we deduce immediate! y that cp is convex and thus g is rank one convex. 

This concludes the proof of the theorem. + 

Acknowledgments: 

Tt would like to thank A. Curnier for stimulating discussions on this problem. 

98 

[1: 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[]( 

[ 1 J 

[1: 

Be 
Eeo 
De 
CI-



References : 

[1) J.J. Alibert, B. Dacorogna: An example of a quasiconvex function that is not poly
convex in two dimensions; Arch. Rational Mech. Anal. 117 (1992), 155-166. 

[2) J.M. Ball: Convexity conditions and existence theorems in nonlinear elasticity; 
Arch. Rational Mech. Anal. 64 (1977), 337-403. 

[3) B. Dacorogna: "Direct methods in the calculus of variations"; Springer-Verlag, 
Berlin ( 1989). 

[ 4] B. Dacorogna, H. Koshigoe: On the different notions of convexity for rotationally 
invariant functions; Annales Fac. Sciences de Toulouse (1993), 163-184. 

[5) B . Dacorogna, P. Marcellini: A counterexample in the vectorial calculus of varia
tions; in "Mate rial instabilities in continuum mechanics"; ed. by J.M. BaU, Oxford 
University Press (1988), 77-83. 

[6] l. Fonseca, S. Müller: Relaxation of quasiconvex functions in BV (Q;IRP); Arch. 
Ration. Mech. Anal. 123(1993), 1-49. 

[7] C. Goffman, J. SeiTin: Sublinear functions of measures and variational integrais, 
Duke Math. J. (1964), 159-178. 

[8] C.B. Morre y: "Multiple integrais in the calculus of variations"; Springer-Verlag 
(1966). 

[9] S. Müller: On quasiconvex functions which are homogeneous of degree one; 
Indiana Univ. Math. J. 41 (1992), 295-300. 

[10] V. Sverak: Quasiconvex functions with subquadratic growth; Proc. Roy. Soc. 
London 433A (1991), 723-725. 

[11) L. Tartar: Sorne remarks on separately convex functions; preprint. 

[ 12] K. Zhang: A construction of quasiconvex functions with linear growth at infinity; 
preprint. 

Bernard DACOROGNA 
Ecole Polytechnique Fédérale de Lausanne 
Department of Mathematics 
CH 1015 LAUSANNE 

99 


	Sans titre1
	Sans titre2
	Sans titre3

